A Simple rule for the evolution of cooperation on graphs and social networks

Meat-eater ants feeding on a cicada, social ants cooperate and collectively gather food

PNAS: Leadership, collective behavior, and the evolution of migration

- For unstructured Natural selection favors defectors over cooperators.
- In structured population who meets whom is not random, but determined by relationship
- A simple rule for cycles, spatial lattices, random regular graphs, scale free N/W
 Natural Selection favors cooperators if b/c >k

Cooperators –pays a cost 'c' to receive a benefit 'b'(Payoff=bi-ck)

Defector- pays no cost and distribute no benefit (*Payoff=bj*)

- Fitness of individual = baseline fitness + payoff
- Strong selection = payoff > baseline fitness
- Weak selection =payoff < baseline fitness (Many different factors contribute to overall fitness of an individual)

Fitness of a player =1-w+wp

We study three different update rules.

- 1. Death Birth
- 2. Imitation
- 3. Birthdeath

Consider 'death-birth' (DB) updating: in each time step a random individual is chosen to die; subsequently the neighbors compete for the empty site proportional to their fitness.

The payoff for the cooperator is

$$P_{\rm C} = bq_{\rm C|C}(k-1) - ck.$$

The payoff for the defector is

$$P_{\rm D} = bq_{\rm C|D}(k-1).$$

Cooperation is favored if

$$P_{\rm C} > P_{\rm D}$$

From pairwise approximation for

$$(k-1)(q_{C|C} - q_{C|D}) = 1$$

weak selection

$$P_{\rm C} - P_{\rm D} = b - ck$$

This leads to b/c>k rule

2) Imitation (IM) updating: in each time step a random individual is chosen to evaluate its strategy; it will either stay with its own strategy or imitate a neighbor's strategy proportional to fitness.

$$b/c>k+2$$

3) Birth-death' (BD) updating: in each time step an individual is chosen for reproduction proportional to fitness; the offspring replaces a random neighbor. (Here only payoff at boundary matters, so selection always favors defectors)

Conclusion

- In evolutionary dynamics on graph , natural selection favors cooperation over defection if b/c>k
- Fewer connections makes easier to promote cooperation by natural selection
- Effective average degree of many networks may be small, selection of cooperation on graphs is a powerful tool.
- Average degree of graph :an inverse measure of social relatedness.

The fewer friends I have more strongly is my fate bound to theirs.