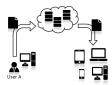
Reducing Costs in the Personal Cloud: Is BitTorrent a Better Bet?


Rahma Chaabouni, Marc Dánchez-Artigas and Pedro Gracía-López

Viktor Hangya

Wednesday 19th November, 2014

Motivation

- Cloud storage
 - Http vs. BitTorrent
 - BitTorrent is more effective for large files
 - 99% of the files are smaller than 16 MB
- Switch protocol
 - benefit from the common interest of users (devices)
 - offload the cloud server
- In the paper
 - comparison of Http and BitTorrent protocols
 - dynamic switching algorithm

Download Times

- seed (server) upload speed 5 Mbps
- client download/upload speed 2/1 Mbps

	1 MB file			
Clients count	НТТР	BT	Time difference	Data from peers
2	4 s	5.51 s	-1.51 s	236.13 KB
3	4.8 s	5.47 s	-0.67 s	819.6 KB
4	6.4 s	6.03 s	+0.37 s	1.57 MB
5	8 s	6.25 s	+1.75 s	1.64 MB

	5 MB file			
Clients count	HTTP	ВТ	Time difference	Data from peers
2	20 s	21.52 s	-1.52 s	2.9 MB
3	24 s	21.69 s	+2.31 s	6.02 MB
4	32 s	23.06 s	+8.94 s	7.84 MB
5	40 s	24.05 s	+15.95 s	11.59 MB

	10 MB file			
Clients count	НТТР	ВТ	Time difference	Data from peers
2	40 s	42.06 s	-2.06 s	6.08 MB
3	48 s	42.73 s	+5.27 s	11.97 MB
4	64 s	42.83 s	+21.17 s	17.6 MB
5	80 s	44.68 s	+35.32 s	23.64 MB

Metrics

•
$$Gain = \frac{T_{cs} - T_{bt}}{T_{cs}}$$

•
$$T_{cs} = \frac{F}{\min\{d_{min}, \frac{u(S)}{I}\}}$$

•
$$T_{bt} = \frac{F}{\min\{d_{min}, \frac{u'(\mathbf{I})}{L}, u(\mathbf{S})\}} + \alpha_{bt}$$

•
$$Offload = 1 - \frac{data\ from\ cloud}{total\ data\ sent}$$

Algorithm

Algorithm 1 Protocol Decision Algorithm

```
Require: \tau: the gain constraint
Require: switched f: the state of file f
Require: F: the size of file f
Require: u(S): the upload speed of the seeder nodes
Require: C_f = \{(u_i, d_i), \forall i \in \mathcal{L}\}: set of upload and
  download bandwidths of all the leechers interested in f.
  if ( not switched_f ) then
    calculate Gain(u(S), C_f, F)
    if (Gain(u(S), C_f, F) > \tau) then
       create a .torrent
       launch a BT seed in the cloud
       for all clients requesting f do
         get the .torrent from the server
         launch a BT leecher
         start BT transfer
       end for
       switched f=true
    else
       download the file via HTTP
    end if
  else
    send the .torrent to the new requester
    launch a BT leecher inside that requester
  end if
```

Results

- Ubuntu One trace
 - 30 hours of log
 - 1,887,247 files
 - 32.67% download
 - total download volume 1,240.25 GB
 - 90% of the files are less than 1 MB
- Settings:
 - seed upload speed 2 Mbps
 - client download/upload speed 1/0.5 Mbps
- this is just simulation!
- with $\tau = -1.0$, 450\$ can be saved per month (\$3.000 per month originally)

Constraint	Offloaded Volume	Overall Offload%
$\tau = -1.0$	207.35 GB	16.7183%
$\tau = -0.5$	207.33 GB	16.7170%
$\tau = -0.2$	207.04 GB	16.6938%
$\tau = 0.0$	137.64 GB	11.0979%
$\tau = 0.2$	137.59 GB	11.0942%
$\tau = 0.5$	90.60 GB	7.3055%
$\tau = 1.0$	0.0 GB	0.0%

Conclusion

- dynamic switching algorithm
 - server can benefit from the upload bandwidth of the clients
 - everybody can benefit if the server is not overloaded

- Sync
 - P2P file synchronization based on BitTorrent
 - unlimited space