Agent-Based Modelling in NetLogo
Networks

David Hales
www.davidhales.com/abm-netlogo

Resources for learning networks

e See Links in NetLogo programming guide (Help
> User Manual > Programming Guide > Links):
https://ccl.northwestern.edu/netlogo/docs/
programming.html#links

e See Links section in NetLogo dictionary (Help >
Dictionary > Links):
https://ccl.northwestern.edu/netlogo/docs/
dictionary.html

Networks — undirected links

NetLogo implements networks using Links
Links is an agentset like turtles and patches
A turtle can create a link with another turtle:

ask turtle O [create-link-with turtle 1]
ask turtles [create-link-with one-of other turtles]

Many links can be created in one go:

ask turtles [create-links-with other turtles]

Networks

 Some link primitives that turtles can use:
my-links ; returns set of my links
link-neighbors ; returns turtles | am linked to
link-neighbor? turtle ; true if turtle is my neighbour

* Examples of use:
ask my-links [die] ; kill all my links
ask link-neighbors with [color = red] [die]
mean [count my-links] of link-neighbors

Networks — directed links

* Using “with” creates undirected links

* Directed links created with “from” and “to”:
ask turtle O [create-link-to turtle 1]
ask turtle O [create-link-from turtle 1]

* Primitives use “in” and “out”:
my-in-links ; set of links directed in to me
my-out-links ; set of links directed out from me
in-link-neighbors ; return my in link neighbors
out-link neighbor? turtle ; out link to turtle exists?

Networks — link properties

A link can be identified by end turtle numbers:
ask link 3 4 [die] ; kill link between turtle 3 & 4

Links have variables for color, thickness etc.

Include two variables end1 and end?2
containing the turtles at each end of the link

— undirected links: end1 = lowest who valued turtle

— directed: it is direction of the link: end1 -> end2

If a turtle dies then all its links die

Networks — turtle positions

Links are drawn as lines between turtles
(directed links as arrows)

Turtle positions are not affected unless explicit
commands are used

Layout primitives move the turtles around to
better visualise the network —e.g.:

layout-radial turtles links root-turtle
layout-spring turtles links tautness length repulsion

tie and untie primitives tell a link to become
“fixed” such that movement in one turtle is
appropriately copied by the other turtle.

Networks — link breeds

* |[n the same way that turtle breeds can be
created so can link breeds:

undirected-link-breed [edges edge]
directed-link-breed [arrows arrow]
* Then the link primitives use the breed name:

create-edge-with turtle O
count my-edges
ask edge-neighbors [set color red]

Task 1 — wire a random graph
* Write a program with:

— Two sliders (input values):
* N —number of nodes [1..100]

 P—probability that any two nodes are connected with an
undirected edge [0..1]

— Two buttons:

e Setup — calls procedure “setup” that creates the nodes

e Rand — calls procedure “rand” that wires nodes with the
Probability P

— Two monitors (output values):
* Edges — displays total number of edges in the network
 Max degree — number of links of the most connected node

Hint: You may need to use a “foreach” loop or a “while” loop (which you need to
lookup in the NetLogo dictionary).

Task 1: three ways of doing it

to setup
clear-all
create-turtles N [set shape "circle"]
layout-circle turtles 10

end

: cheap but inefficient
to random-v1
ask turtles [
create-links-with other turtles]
ask links [if prob (1 - p) [die]]

; systematic

to random-v2
foreach sort turtles [
ask turtles with [who > [who] of 7]
C

if prob p [create-link-with ?]
]
]

end

; using nested while loops

to random-v3
let node-count count turtles
let 1 0 : start 1 at node 0

while [1 < node-count] [
let 1 +1; start jat node 1 + 1
while [j < node-count] [
if prob p [
ask turtle 1 [
create-link-with turtle j

]
]
set 3 J+1 ; next)
]
set 11+ 1 : next 1
]
end

to-report prob [x]
report (random-float 1 < x)
end

Graph topologies and measures

* Common graph topologies:
— Random: all edges equally likely
— Scale-free: degree distribution = power law
— Small-world: clustered neighbours + long links
— Lattice: neighbours connected in a space

 Common graph measures:

— Clustering Coefficient (C): proportion of neighbours
who are also neighbours

— Average path length (L): average shortest distance
between all pairs of nodes

Network examples program

 Download network examples program from the
abs webpage

* |t gives examples of various topologies, measures
and layouts.

* We will briefly look at two topology creation
algorithmes:
— Pref. attachment for scale-free networks
— Lattice rewiring for small-world networks

Note: many of the functions implemented by the program (and many other useful
ones) can be performed with the networks extension more efficiently. See “networks”
under “extensions” in the NetLogo user manual.

Preferential attachment

 Add new nodes one-by-one

e Each new node makes one link to one other
existing node:

— select existing node probabilistically
proportionately to it’s existing number of links

— e.g. a node with k links has half the probability of
being selected as a node with 2k links

* Hence the “rich get richer” => scale-free
degree distribution

Paper: Albert-Laszlé Barabasi & Reka Albert. Emergence of Scaling in Random
Networks, Science, Vol 286, Issue 5439, 15 October 1999, pages 509-512.

Create a pref. attach. network with N nodes:

: create a preferential attachment network of N nodes
to create-pref-attach-network [N]
; create two nodes and link them together
create-turtles 2
ask turtle @ [create-link-with turtle 1]
: create the rest of the nodes
create-turtles N - 2 [
; new node makes link to an old node by
; selecting a random link and then selecting
; a random end of that link - giving a node
create-link-with [one-of both-ends] of one-of links
]
; radial layout with first turtle at centre
layout-radial turtles links turtle @
end

also see: wire-small-world procedure in the network examples program

Preferential attachment model

Model from netlogo models library: sample
models > networks > preferential attachment
This model animates the process of

preferential attachment to produce a scale-
free network

It displays the degree distribution of the
network as it forms in two plots

Note: detailed explanation of the code and
some tasks are given in exercise sheet on the
labs page

Small-world network

* Create a 1D lattice of N nodes in which each
node has K neighbours
 Then with probability P rewire each edge:
— one end of edge stays connected
— other end rewired to random other node
— Total number of edges stays constant

— restricting rewire end to “forward edges” makes
sure each node keeps at least K/2 edges

* Produces high C and low L for certain params.

Paper: DJ Watts and SH Strogatz. Collective dynamics of ‘small-world’” networks,
Nature, 393:440-442 (1998)

Small-world networks

Example: N=20, K=4, varying P:

Reqular Small-world

Increasing randomness

From: DJ Watts and SH Strogatz. Collective dynamics of ‘small-world’ networks,
Nature, 393:440-442 (1998)

Small-world networks

LI B ¢ R A B B R r
g o
cel ° Clp)/C0) @
s .
| 0
0.6 -
) ®
C4 . .
!
L Lp)/Lo) *
02+ ™
- o a
* . * ™ ™
O.b 2 3 2 2 3332l 322l " 2 2 3 3231l 2 " s 223
0.0001 0.001 0.01 0.1 1

p

From: DJ Watts and SH Strogatz. Collective dynamics of ‘small-world’ networks,
Nature, 393:440-442 (1998)

create small-world network

: create a small-world network of N nodes,
; with K degree and rewire prob P
to create-small-world-network [N K P]
+ first create a 1D lattice
create-turtles N : create nodes
ask turtles [: make forward links for each turtle
let links-done 0
while [links-done < K / 2] [
set links-done links-done + 1
; use mod N to wrap around the ring N+1 becomes 0
create-link-with turtle ((who + links-done) mod N)

]
]

: then rewire links
ask links [;» ask all existing (old) edges
if P > random-float 1 [; with probability p (rewire)
; new edge from node endl to random other node
ask endl [
create-link-with one-of other turtles with
[not link-neighbor? myself]
]
die ; remove the old edge
]
]

; layout turtles in a sorted circle
layout-circle (sort turtles) max-pxcor - 2
end

This rewire links section is not entirely correct (can you work out why?).
See the wire-small-world procedure in the network examples program.

Small-world network model

Load model from netlogo models library:
sample models > networks > small worlds

This model assumes nodes have k =4
neighbours

Lets you rewire one-by-one (or all at once)
and displays C and L on a plot

It also lets you highlight a node and see
individual C and L statistics for the node

Virus on a network model

Load model from netlogo models library: sample
models > networks > virus on a network

Read Info tab and play with model

t wires a spatial network in which each node
inks to some number of other nodes that are
closest to it in the 2D space

Task 2: Modify model to wire some other
topology (e.g. random, scale-free, small-world)

How does it make a difference to the dynamics?

Task 2: pref. attach.

Add the following procedure and call it instead of the
spatial-setup procedure:

to setup-pref-attach-network
ask turtle @ [create-link-with turtle 1]
ask turtles with [count my-links = @] [
create-link-with [one-of both-ends] of one-of links

]
layout-radial turtles links (turtle 0)

end

Here we can assume a population of turtles have already
been created and they don’t have any links.

Note: code example on lab page includes this and small-world networks

Task 3: Turtles moving on a network

 Write a program to wire some network topology with
30 nodes

* Create a set of 3 turtles that randomly walk on the
network
— Initially place the turtles on random nodes

— Each time step they select a edge from their current node
at random and move to the node linked to by the edge

* Hints: It helps to create two breeds of turtles one for

the nodes and one for the moving turtles. The move-to
command moves a turtle to the location of another
turtle

Task 3: See example models

* Two sample models show one way of
implementing this:

— Sample models > code examples > link-walking
turtles example

— Sample models > code examples > |attice-walking
turtles example

Dynamic networks

 Sample models > Networks > Team Assembly

* Implementation of a dynamic network ABM
that relates to a theory of creative team
formation

* Related to empirical data (plays, movies,
scientific papers)

Paper: R Guimera, B Uzzi, J Spiro, L Amaral (2005) Team Assembly
Mechanisms Determine Collaboration Network Structure and Team
Performance. Science, 308(5722), p697-702

