Agent-Based Modelling in NetLogo
Experimental methods and tools

David Hales
www.davidhales.com/abm-netlogo

Verification, Validation, Calibration

* Verification:
— Checking the model is a correct implementation of
what was intended (the specification)

— No bugs or logical errors

e Validation:

— Checking model against empirical data (often using

“statistical signatures” or “stylised facts” or
gualitative evaluations)

e Calibration:

— Setting various parameters of model based on
empirical data

Verification

e Specifications often given at the agent level using
natural language, formulae, diagrams etc. (a
“conceptual model”)

* Since we generally don’t know what will happen when
we run the model (emergence):

— Verification can be helped by independent implementation
and replication from the conceptual model

* If a replication fails then either the conceptual model is unclear
and / or one or both of the implementations is incorrect

* In general the more independent replications of a model the more
confident we become that the models are valid implementations

Edmonds, B. and Hales, D. (2003) Replication, Replication and Replication - some hard
lessons from model alignment. Journal of Artificial Societies and Social Simulation 6(4)
<http://jasss.soc.surrey.ac.uk/6/4/11.html>

Validation

* What constitutes validation of ABM’s is
controversial (particularly for social systems):

— quantitative prediction of target systems?

— qualitative stylised facts of target systems?

— issues of future & past data and over-fitting

— validate agent behaviour & emergent outcomes?
— validation as “model is useful to users” ?

example model / validation

Sample models > Networks > Team Assembly

Implementation of a dynamic network ABM that
relates to a theory of creative team formation

Related to empirical data (plays, movies, scientific
Dapers)

How convincing is this work as a form of
validation of an ABM?

Paper: R Guimera, B Uzzi, J Spiro, L Amaral (2005) Team Assembly
Mechanisms Determine Collaboration Network Structure and Team
Performance. Science, 308(5722), p697-702

Models as thought experiments

* Many ABM models are not validated:

— there may be no target system or do not predict a
target system or relate to data

— thought experiments: implications of
assumptions, theory development (pure)

— Construction: aid engineering of systems (applied)
— Possible worlds: artificial life / artificial societies
— “fact free science” or “a 3" way of doing science”?

Epstein, J. (2008) Why Model? Journal of Artificial Societies and Social
Simulation vol. 11, no. 4. http://jasss.soc.surrey.ac.uk/11/4/12.html
Axelrod, R. (1997) Advancing the art of simulation in the social sciences. R.

Conte and R. Hegselmann (eds) Simulating Social Phenomena. Springer.

KISS and KIDS

 There are different approaches to formulating
an ABM:

— “keep it simple stupid” (KISS): make the model as
simple as possible to start with then add bits

— “keep it descriptive stupid” (KIDS): make the
model as descriptive as possible then remove bits

Edmonds B and Moss S (2005) From KISS to KIDS — an 'anti-simplistic' modelling
approach. In Davidsson P et al (eds.) Multi Agent Based Simulation. Springer.

Combining Induction & Deduction

 ABM methods combine (in different ways):

— Deduction: the simulation model executes a

computer program performing deductions from
assumptions

— Induction: the experimenter observes the model

runs and attempts to identify patterns and
relationships

* Asimple form of this is the “existence proof”:

a given ABM is sufficient to produce some
result

Hales, D., (2010) Mix, Chain and Replicate: Methodologies for Agent-Based
Modelling of Social Systems. In Mollona, E., (ed) Computational Analysis of
Firms’ Organization and Strategic Behaviour. London and New York: Routledge

Exploring a model

* Given some ABM how do we go about
exploring what it does?

* Most models will have:
— parameters that can be set over some range
— some output measures

 We can perform “experiments”:

— execute sets of simulation runs for different
parameter values

— collect the output measures

Experiments with models

* Given an ABM model we can:
— generate data by running experiments
— control the input parameters

— analyse the data using any statistical or analytic
method we wish (even machine learning etc)

— treat model like a science experiment in a lab

— have hypotheses about what experiments will
produce (hunches)

— Form explanations of how agent behaviours produce
results observed (generate theory)

An example experiment

* Asimple sensitivity analysis:
— Vary a single parameter over some range

— For each value perform a number of simulation
runs with different initial random number seeds

— Each run executes for some number of cycles or
until some stopping condition

— Collect output measures for each run

— Graph the results to see how the input parameter
effects the output measures

NetLogo BehaviorSpace tool

NetLogo has tool called “BehaviorSpace” that
automates experiments of systematic sets of
runs, writing results to a CSV file

Can load CSV into other statistical applications
for visualisation and analysis

BehaviorSpace can use all the processor cores
on the machine, doing runs in parallel

BehaviorSpace can be run in the background
without the netlogo display (headless)

Example: Segregation experiment

* Use BehaviorSpace tool to do an experiment
to explore the Schelling segregation model

— Sample models / social science / segregation

* Model has two input parameters: “density”
and “%similar-wanted”

 We will explore the effect of varying the
%similar-wanted parameter on the output
measure percent-similar (a segregation
measure) and time to reach stability (ticks)

Segregation experiment

* Since the model is not deterministic (it uses random
numbers) it is wise to perform a number of runs for
each value of %similar-wanted

* Since runs with high values of %similar-wanted never
stop we need to put a cut-off at some number of steps
* We will do a scan of:
— %similar-wanted values from 1..100 in increments of 1
— With density held constant at 80
— For each %similar-wanted value we will do 10 runs
— Terminate runs at tick 500 if it has not already terminated

— Report the percent-similar output measure (at end of each
run) and number of ticks each run took

A NetLogo “experiment”
defined under
Tools>BehaviorSpace for
the Segregation model.

It takes quite a while to run
on a standard laptop
(NetLogo is slow) but can
take advantage of multiple
cores on bigger machines

Since NetLogo is written in
Java you can easily run
experiments on servers
without recompiling. See
“headless” slides later

Experiment

Experiment name experiment

Vary variables as follows (note brackets and quotation marks):

'[“%—sinila"-wanted“ [1 1 100]]
["density" 8@]

Either list values to use, for example:
["my-slider* 1 2 7 8]

or specify start, increment, and end, for example:
["my-slider” [0 1 10]] (note additional brackets)
to go from 0, 1 at a time, to 10.

You may also vary max-pxcor, min-pxcor, max-pycor, min-pycor, random-seed.

Repetitions 10
run each combination this many times
Measure runs using these reporters:

>percent—similar
ticks

one reporter per line; you may not split a reporter
across multiple lines

"I Measure runs at every step
if unchecked, runs are measured only when they are over

Setup commands: Go commands:
setup go

Ll Final commands:
run at the end of each run

LlStop condition:

the run stops if this reporter becomes true
Time limit 500

stop after this many steps (0 = no limit)

(Cancel) (

OK

Running experiment

Selecting an experiment —
from BehaviourSpace " Spreadsheet output
and clicking Run will ¥/ Table output
bring up the run options Simultaneous runs in parallel 2
dialogue box => Defaults to one per processor core, e Cackaround.
(Cancel) (oK)

Here we select Table output which gives a simple CSV file in the
form of one line of the file for each run

Since this machine has two processor cores then the default is
two runs in parallel (one on each core)

Results file

Should get a CSV output file that looks something like this:

"BehaviorSpace results (NetLogo 5.2.0)"
"seg.nlogo"

"experiment"”

"05/01/2016 13:12:24:026 +0200"

"min-pxcor", "max-pxcor", "min-pycor", "max-pycor"
"-25","25","-25","25"

"[run number]","%-similar-wanted","density","[step]", "percent-similar","ticks"
"2","1","80","2","52.26993865030675","2"
"3*,"1","80","2","50.683696468820436","2"
1,"1","80","2","50.21625652498136","2"
"4","1","80","2","51.13721946076216","2"
"6","1","80","3","51.47405660377359","3"
'7","1","80","3","52.02985074626866","3"
"5*,"1","80","2","52.21198852483768","2"
"g","1","80","2","51.4044535002183","2"
"io","1","80","2","52.368660795627086","2"

... continued with one line for each of the 1000 runs

You can load this into most statistical packages, such as R or Excel spreadsheet

percent-similar

95

85

75

65

55

45

Scatter plot (in excel)

40 50 60

%-similar-wanted

70

80

90

100

ticks

250

200

150

100

50

0

Scatter plot of ticks

Note: runs at 500 ticks excluded

> an’ 1.0,
-'.fl'-

TR TN

. l'll.:'fii L

) '. ® . .-."!I,I
' -..nu...m-li-i:u.uln;.nlnl-:
Segntelisnngtl?

0 10 20 30 10 - - N

%-similar-wanted

80

To do a simple tr = read.csv(“seg experiment-table.csv", skip = 6)
attach(tr)
plot (X..similar.wanted, percent.similar, pch=20)

plotin R type:

g | 08e0
- lllllll'l"m
T
S - .
il
. i;'l
g © H k
E " ..l!g
. il
D [~
O
|
= []
| '
@ ill"-"!
Sl' ':l"’
. ' ".l'l" ° °
o | il * gt
T l ! ! I |
) o0 10 50 80 100

X ..similarwanted

Results — what have we found?

* Non-linear relationship between %similar-wanted
(input parameter) and emergent segregation (the
percent-similar output measure)

e With %similar-wanted > 75% no stability emerges
which actually leads to lower segregation due to
very low satisfaction levels and constant moving
=>random

* We could of course explore other parameters and
other measures in this way

Task 1 — scan of density experiment

* Perform a sensitivity analysis of the density
parameter in the segregation model using a
BehaviorSpace experiment to:

— Hold %similar-wanted to 30

— Vary density from 10 to 90 in steps of 10

— Perform 10 runs for each density value

— Collecting percent-similar measure at end of each run

— Terminate runs after 500 ticks

— Load result into some package and do a scatter plot of
density against percent-similar*

*Note: A simple way to do this is to load the CSV file into the google sheets
spreadsheet app. If you e-mail the file to yourself in gmail you can then click on the
file attachment and open it as a sheet and produce a plot

< NONG) Experiment

Experiment name expl

Ta S k 1 . Vary variables as follows (note brackets and quotation marks):

["density" [10 10 90]]
["%-similar-wanted" 30]

Experiment setup
S h O U I d I O O k IE_irtr:'ye_rs::;te\rrgllugs;%]use. for example:

or specify start, increment, and end, for example:
["my-slider” [0 1 10]] (note additional brackets)

[] [] []
something like this R
You may also vary max-pxcor, min-pxcor, max-pycor, min-pycor, random-seed.

Repetitions 10

run each combination this many times

Measure runs using these reporters:

percent-similar

one reporter per line; you may not split a reporter
across multiple lines

: Measure runs at every step
if unchecked, runs are measured only when they are over

Setup commands: Co commands:
setup go

Ll Stop condition: Ll Final commands:
the run stops if this reporter becomes true run at the end of each run

Time limit 500

stop after this many steps (0 = no limit)

(Cancel) (OK)

Task 1 — output csv file

Something similar to:

"BehaviorSpace results (NetLogo 5.2.0)"
"seg.nlogo"

"expl"

"04/30/2016 21:07:28:790 +0200"

"min-pxcor", "max-pxcor", "min-pycor", "max-pycor"
"-25","25","-25","25"

"[run number]","density","%-similar-wanted","[step]", "percent-similar"
"i","10","30","4","93.10344827586206"
"2","10","30","8","96.875"
"3","10","30","7","91.42857142857143"
"4","10","30","7","88.76404494382022"
"5","10","30","5","98.30508474576271"
"6","10","30","7","91.30434782608695"
"7","10","30","4","95.04950495049505"
"g","10","30","6","93.16239316239316"
"9","10","30","7","95.83333333333334"
*i0","10","30","5","90.9090909090909"
*i1","20","30","9","85.57919621749409"
"i2","20","30","9","82.67716535433071"

... continued for the 90 runs

percent-simlar

100

95

90

85

80

75

70

0o @ ¢¢

L8 2

“/.

10

Task 1 - scatter plot (excel):

¢ ¢ a9 W

20

30

density / percent-similar plot

40

@

9 .

3 3 s $
4 8 3

50 60 70 80

density

To do a simple plotin R type: tr=read.csv("seg expl-table.csv", skip = 6)
attach(tr)

plot(density, percent.similar)

Lo
L
I
L
O')—o
O
D_O
5@80
=
@ W 8
e «
T o g &
L
M~] 8 g e Q
g ° S
&
SO O

20 40 60 80

density

Vary several parameters

* We can vary several parameters at the same
time to produce a scan of all combinations
e Suppose we wish to vary:
— %similar-wanted between 10 and 90 in steps of 10
— density between 10 and 90 in steps of 10
— measure percent-similar for each combination
— do 10 runs for each combination
— terminate by step 250
— giving 9 x 9 x 10 = 810 individual runs

e No Experiment

Experiment name exp2

EX pe ri m e nt Set u p fo r \/Eeir:e:rii;t:ll‘es[f; i(;ll;%l:s] (note br:;kets and quotation marks):
. . "%-similar-wanted" [10 10 990

scanning density and

%-similar-wanted T i o e

or specify start, increment, and end, for example:
["my-slider” [0 1 10]] (note additional brackets)

to ether to go from 0, 1 ata time, to 10.
You may also vary max-pxcor, min-pxcor, max-pycor, min-pycor, random-seed.

Repetitions 10

run each combination this many times

Measure runs using these reporters:

percent-similar

one reporter per line; you may not split a reporter
across multiple lines

: Measure runs at every step
if unchecked, runs are measured only when they are over

Setup commands: Co commands:
setup go

LI Stop condition: LI Final commands:
the run stops if this reporter becomes true run at the end of each run

Time limit 250

stop after this many steps (0 = no limit)

(Cancel) G—OK—)

Result — level plot of average percent-similar for
different density and %-similar-wanted values

segregation (percent-similar)

' 100

90

80

- 70

- 60

50

20 40 ©60 80
threshold (%-similar-wanted)

R script to produce level plot from csv file:

read in netlogo csv file, skip 6 info lines at start
tr = read.csv("'seg expZ-table.csv", skip = 6)
select and rename fields (columns) and put into ts
(R changes their names in csv file to remove illegal charaters)
ts <- data.frame(density = tr$density,

threshold = tr$X..similar.wanted,

segregation = tri3percent.similar)
calaculate averages for each unique (density, threshold) pair
ta <- aggregate(ts, by=list(tsSdensity,tsSthreshold), FUN=mean)
library(lattice)
p <- levelplot (segregation ~ threshold * density, data = ta)
print (p) # display the plot

Note: the level plot on the previous screen uses a fancy script similar to
this that improves the appearance.

Running “headless” experiments

* |f you have a netlogo model in which you have
defined an experiment

* You can run the experiment in headless mode
as a background process (i.e. no display / user
interface)

* This is useful if you wish to use a server
machine with multiple cores

* You can leave the process running and come
back to it later (perhaps days or weeks later!)

See: Netlogo Manual: Features > BehaviorSpace > Advanced usage

Headless experiments

* Given a machine with java installed

* Create a directory containing copy of:
— NetlLogo.jar file
— lib directory (and all contents)
— your-model.nlogo
* NetLogo.jar and the lib directory can be found in
the NetLogo install directory

e your-model.nlogo is your model with an
experiment defined in BehaviorSpace

Headless experiments

Within the directory you can type the following
at the command line:

java -Xmx1024m -Dfile.encoding=UTF-8 -cp NetLogo.jar \
org.nlogo.headless.Main \
--model your-model.nlogo \

—-—-experiment your-experiment-name \
-—-table result.csv

Where:

e your-experiment-name is the name you gave to the
BehaviorSpace experiment in your-model.nlogo
e result.csvis the name of a file to write the output to

Headless experiments — shell script

If you intend to run headless experiments regularly then it helps to create a
shell script that takes two arguments: <program-name> <experiment-name>

A shell script called nlr.sh:

#!/bin/bash

echo "Netlogo experiment \"$2\" in model \"${1}.nlogo\""
echo "output file: $l-exp-$2-table-out.csv"
nohup nice -n 19 \

java -Xmx1024m -Dfile.encoding=UTF-8 \

-cp NetLogo.jar org.nlogo.headless.Main \
—--model ${1}.nlogo \
—--experiment $2 \

—-table $l-exp-$2-table-out.csv &

Then you can simply type:
./nlr.sh your-model your-experiment-name

Notice the use of “nohup” and “nice —n 19” (allows you to disconnect /
reconnect and gives your jobs low priority so you don’t hog the server)

Integration with Java, R and
Mathematica

* You can load CSV files into Java programs, R or
Mathematica but there are tools for deeper, Java, R
and Mathematica integration:

e Java controlling API:

— https://github.com/NetLogo/NetLogo/wiki/Controlling-API
* Rintegration:

— http://bergant.github.io/nlexperiment

 Mathematica integration:
— Netlogo manual / features / mathematica link

Note: | have not used these so can not say how well they work. If anyone explores
them | would be interested to know how well they worked

Other kinds of parameter exploration

 We only looked at simple scans of parameters

* If you want to something different such as:
— Random sample of parameter space

— Intelligent searching of parameter space (say using
hill-climbing or other optimisation approach)

* Then you can:

— write netlogo code to directly implement this (netlogo
can write directly to files to store results for
processing)

— Or use the integration tools

